
Continue Data Structures Grand Tour
Work on Hardy's Taxi

BinaryInteger due now (commit, please)
Hardy due Monday

Questions:
◦ Hardy
◦ Reading?
◦ Big-oh for finding things in an array?

Today:
◦ Review solution to BinaryInteger.
◦ Start the Data Structures tour
◦ Work on Hardy’s taxi

… appears to be ready. Let me know if you
have any problems with it.

addiator 4:53am > cd /class/csse/csse220/200820/
addiator 4:55am > ./check Hardy
Checking Hardy
Clearing
/afs/rh/class/csse/csse220/200820/turnin/mrozekma/Hardy/extract/
Copying *.java... done

Compiling project...
No compile errors found
mrozekma - Summary for Hardy
Graded on Tue Jan 15 04:55:28 EST 2008

N Points Your Answer
1 15/15 1729 = 1^3 + 12^3 = 9^3 + 10^3
5 18/18 32832 = 4^3 + 32^3 = 18^3 + 30^3
30 10/10 515375 = 15^3 + 80^3 = 54^3 + 71^3
100 4/4 4673088 = 25^3 + 167^3 = 64^3 + 164^3
500 3/3 106243219 = 307^3 + 426^3 = 363^3 + 388^3

Points earned: 50/50

Array (1D, 2D, …)
StackWhat is "special" about

each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

Last-in-first-out (LIFO)
Only top element is accessible
Operations: push, pop, top, topAndPop
◦ All constant-time.
Easy to implement as a (growable) array
with the last filled position in the array
being the top of the stack.
Applications:
◦ Match parentheses and braces in an expression
◦ Keep track of pending function calls with their

arguments and local variables.
◦ Depth-first search of a tree or graph.

Note: these terms are general.
Java uses: push, pop, and peek().

Array (1D, 2D, …)
Stack
Queue

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

First-in-first-out (FIFO)
Only oldest element in the queue is
accessible
Operations: enqueue, dequeue (offer() and
poll() in Java)
◦ All constant-time.
Can be implemented as a (growable)
"circular" array
◦ http://maven.smith.edu/~streinu/Teaching/Cou

rses/112/Applets/Queue/myApplet.html
Applications:
◦ Simulations of real-world situations
◦ Managing jobs for a printer
◦ Managing processes in an operating system.
◦ Breadth-first search of a graph.

In Java, enqueue is offer(), dequeue is poll() and

Queue is an interface

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

A list is an ordered collection where elements
may be added anywhere, and any elements
may be deleted or replaced.
Array List: Like an array, but growable and
shrinkable.
Linked List:

Running time for add, remove, find?

LinkedList<String> list = new LinkedList<String> ();
list.add("abc");
list.add("xyz");
list.add(1, "ddd");
list.add(2, "jkl");
System.out.println(list);
list.remove("ddd");
System.out.println(list);
list.remove(2);
System.out.println(list);

Output:
[abc, ddd, jkl, xyz]
[abc, jkl, xyz]
[abc, jkl]

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList
Set
MultiSet

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

Collection of nodes
One specialized node is the root.
A node has one parent (unless it is the root)
A node has zero or more children.
Example: directory structure on a hard drive.
Binary tree: left and right children
Binary search tree
◦ Nodes in left subtree precede the root in item ordering
◦ Nodes in right subtree precede the root in item ordering.
Run time of insertion, deletion, and search?
Much more on trees in 230.

HashTable
Create a big array
Each possible element to be inserted has an index (a
calculated “hash code”)
Since the number of things we could possibly insert
into the array >> the size of the array, the hash
codes aren’t unique, so we need to deal with this
So insertion, deletion, and search basically just
involve:
◦ Calculating the hash code, which is independent of n,

the number of things in the array.
◦ Indexing into that point of the array.
What’s the big-Oh runtime?
So why ever use trees?

Set: A collection that never contains two
distinct objects a and b, such that a.equals(b).
Multiset (a.k.a. bag). An item can occur
multiple times, and the collection keeps track
of the multiplicity of each.
Two Java representations of sets
◦ TreeSet (based on a Binary Tree) – items ordered
◦ HashSet (based on Hash Table) – items not ordered.
Running times for add, remove, find?
◦ Depends on which used

Define a class to insert in the set:
class Pair implements Comparable<Pair>{

private String s1, s2;

public Pair(String s1, String s2) {
this.s1 = s1;
this.s2 = s2;

}

@Override public String toString() {
return String.format("<%s,%s>", this.s1, this.s2);

}

public int compareTo(Pair other){
return this.s1.compareTo(other.s1);

}

@Override public boolean equals(Object other) {
Pair oth = (Pair)other;
return this.s1.equals(oth.s1);

}

@Override public int hashCode() {
return s1.hashCode();

}
}

TreeSet<Pair> ts = new TreeSet<Pair> ();
ts.add(new Pair("abc", "1"));
ts.add(new Pair("def", "2"));
System.out.println(ts);
System.out.println(ts.contains(new Pair("abc", "3")));
ts.add(new Pair("abc", "3"));
System.out.println("After duplicate \"add\": " + ts);
ts.remove(new Pair("abc", "3"));
System.out.println(ts);
ts.add(new Pair("abc", "3"));
System.out.println(ts);
ts.add(new Pair("bbb", "4"));
System.out.println(ts);

Output:
[<abc,1>, <def,2>]
true
After duplicate "add": [<abc,1>, <def,2>]
[<def,2>]
[<abc,3>, <def,2>]
[<abc,3>, <bbb,4>, <def,2>]

HashSet<Pair> t2 = new HashSet<Pair> ();
t2.add(new Pair("abc", "1"));
t2.add(new Pair("def", "2"));
System.out.println(t2);
System.out.println(t2.contains(new Pair("abc", "3")));
t2.add(new Pair("abc", "3"));
System.out.println("After duplicate \"add\": " + t2);
t2.remove(new Pair("abc", "3"));
System.out.println(t2);
t2.add(new Pair("abc", "3"));
System.out.println(t2);
t2.add(new Pair("bbb", "4"));
System.out.println(t2);

Output:
[<abc,1>, <def,2>]
true
After duplicate "add": [<abc,1>, <def,2>]
[<def,2>]
[<abc,3>, <def,2>]
[<abc,3>, <def,2>, <bbb,4>]

Note that the
elements are not in
Comparable order.

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList
Set
MultiSet
Map (a.k.a. table, dictionary)
◦ HashMap
◦ TreeMap

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

A Table of key-value pairs.
Insert and look up things by key.
Implementations:
◦ TreeMap
◦ HashMap
Same running time as the corresponding sets.
More details next time.

The dedication from Data Structures and the
Java Collections Framework by William Collins
(first edition):
◦ To Karen, my wife of 35 years, for giving me 20 of

the happiest years of my life.
Go figure!

Choose your partner for Markov now:
◦ Must be different than your Minesweeper partner.
◦ Mark if you have no preference.

◦ Angel: Lessons > Project Forms > Markov Partner
Declaration

Test your interface using the provided code
Or work on the rest of HW 18 if you have
finished Hardy's Taxi.

